Jdi na obsah Jdi na menu
 


Vlastnosti hvězd

Hvězdy mají různé fyzikální vlastnosti, které se v určitých hranicích liší.

Záření

Energii, kterou hvězdy produkují jako následek jaderné fúze, vyzařují do vesmíru buď jako elektromagnetické záření nebo v podobě částic. Tyto vyzářené částice tvoří hvězdný vítr, který proudí z vnějších vrstev v podobě volných protonů a elektricky nabitých alfa a beta částic. V jádru hvězdy vzniká i stálý proud neutrin.

Barva hvězdy je dána tou frekvencí viditelného světla, kterou hvězda vyzařuje nejintenzivněji. Tato frekvence závisí na teplotě vnějších vrstev hvězdy. Kromě viditelného světla vyzařují hvězdy i jiné formy elektromagnetického záření, které je pro lidské oko neviditelné. Elektromagnetické záření hvězd pokrývá celé elektromagnetické spektrum, od nejdelších vlnových délek rádiových vln, přes infračervené záření, viditelné světlo, ultrafialové záření, po nejkratší rentgenové a gama záření. Tyto frekvence umožňují poznávat fyziku hvězd.

Astronomové dokáží pomocí spektra hvězdy určit její povrchovou teplotu, metalicitu a rychlost rotace. Pokud je známa vzdálenost hvězdy, tak se dá určit i svítivost a na základě hvězdných modelů lze odhadnout hmotnost, poloměr, povrchová gravitace a doba rotace. Zakřivení okolí hvězdy její gravitací se využívá k určení hmotnosti samostatných hvězd. Na základě těchto parametrů je možné odhadnout i věk hvězdy.

Svítivost hvězdy představuje množství vyzářené energie za jednotku času. Závisí na její povrchové teplotě a poloměru. Udává se v jednotkách výkonu. Hvězdy většinou nevyzařují energii rovnoměrně celým povrchem. Např. rychle rotující hvězda Vega má větší energetický tok na pólech než podél rovníku.

Oblasti povrchu s teplotou a svítivostí nižší než průměrné hodnoty hvězdy jsou známé jako hvězdné skvrny. Obecně mají malé hvězdy jako Slunce na disku jen nevýrazné hvězdné skvrny. Větší, obří hvězdy, mají výraznější skvrny a také je na nich pozorovatelné výrazné okrajové ztemnění, tzn. jejich jas klesá směrem k okrajům hvězdného disku.

Chemické složení

Do objevu spektroskopie v 19. století se nevědělo, z čeho se hvězdy skládají. Gustavu Robertu Kirchhoffovi se v druhé polovině 19. století podařilo dokázat, že jistá tmavá čára ve slunečním spektru je způsobena rozžhaveným sodíkem. Byla to první indicie objevu, že hvězdy se skládají ze stejných chemických prvků, jako tělesa na Zemi. Jelikož však zároveň vše napovídalo tomu, že hvězdy jsou velmi horké, tyto prvky se vyskytují většinou volně a tudíž nejsou vázány v četných chemických sloučeninách jak to známe na Zemi. Jen nejchladnější hvězdy mají na svém povrchu některé jednoduché chemické sloučeniny, například TiO, CH a CN (na Slunci např. OH, MgH, SiH). V důsledku vysoké teploty je mnoho atomů také ionizovaných. Směs volných elektricky nabitých částic (iontů) a neutrálních částic se nazýváplazma.

V jádrech hvězd, kde je teplota nejvyšší a dosahuje minimálně 7 milionů stupňů, je existence jakékoliv chemické sloučeniny nemožná. Hmota hvězd v těchto částech je ve stavu atomových jader a volnýchleptonů. Některá závěrečná stadia hvězd nejsou složena z plazmatu, ale z tzv. degenerovaného plynu.

Jednotlivé prvky se ve spektru hvězdy projevují jako čáry. Podle jejich měření je nejzastoupenějším chemický prvek ve všech plazmových hvězdách vznikajících v naší Galaxii vodík (71 %). Po něm následujehelium (27 %).  Ostatní prvky tvoří oproti vodíku a héliu jen nepatrnou příměs, jejíž množství není u všech hvězd stejné. Podíl těžkých prvků se zjišťuje prostřednictvím obsahu železa v hvězdné atmosféře, protože železo je běžný prvek a jeho absorpční (tmavé) čáry se měří relativně snadno. Jelikož molekulární mračna, z nichž vznikají hvězdy, se postupně obohacují o těžší prvky z výbuchů supernov, můžeme chemické složení použít i na odvození věku hvězdy a toho, jakou generaci hvězd od vzniku vesmíru hvězda představuje. Starší hvězdy mají menší zastoupení těžších chemických prvků než mladší. Podíl těžkých prvků může také naznačovat, že hvězda má planetární systém. Chemické složení hvězd se časem mění v důsledku termonukleárních reakcí, které mění prvky na jiné prvky.

HE 1327-2326 je hvězdou s nejnižším odměřeným obsahem železa. Obsahuje pouze 1/200 000 železa, které se nachází ve Slunci. Naopak μ Leonis obsahuje téměř dvojnásobek železa ve srovnání se Sluncem a hvězda 14 Herculis s planetárním systémem ho obsahuje až trojnásobek. Existují i hvězdy se zvláštním chemickým složením co vykazují vyšší množství některých prvků, zejména chromu a přechodných kovů.

Hmotnost

Nejvýznamnější charakteristikou hvězd je jejich hmotnost, která určuje vnitřní strukturu a vývoj. Střední hmotnost hvězd je polovina hmotnosti Slunce. Předpokládá se, že v mladším vesmíru vznikaly hmotnější hvězdy, než pozorujeme dnes. Současné hmotnosti pozorovaných hvězd se řídí tzv. Bethe-Salpeterovou rovnicí pojmenovanou po astrofyzikovi Edwinu Salpeterovi, který ji zformuloval. Rovnice říká, že hvězdy s nízkou hmotností jsou mnohem početnější, než hvězdy s vysokou hmotností. Ty s nízkou hmotností se totiž za současných podmínek v galaxiích snadněji formují a jejich život je oproti hmotnějším hvězdám také delší, protože termojaderné reakce v nich probíhají méně intenzivně a jaderné palivo jim tedy déle vydrží.

Určit hmotnost hvězdy, pokud ta není složkou hvězdné soustavy, je náročné. Jednou z metod je analýza jejího spektra, další měření svítivosti, která je přímo závislá na hmotnosti hvězdy. V případě dvojhvězdyastronomové určí její hmotnost pozorováním vzájemného oběhu složek pomocí Keplerových a Newtonových zákonů.

Hraniční hmotnost

Množství hmoty tvořící hvězdy je fyzikálními zákony omezené. Při nízké metalicitě mají nejmenší hvězdy mají asi 8,3 % hmotnosti Slunce, což je zhruba 87násobek hmotnosti nejhmotnější planety sluneční soustavy – Jupitera. Teoretické minimum hmotnosti hvězdy se stejnou metalicitou, jakou má Slunce, je 75násobek hmotnosti Jupiteru. Hvězdy s menší hmotností než tento limit nemohou existovat, protože teplota a tlak v jejich jádru by byly příliš nízké na zapálení fúzních reakcí. Tělesa přibližující se ke spodnímu limitu této hmotnosti se nazývají hnědí trpaslíci. Nejmenší známá hvězda, která ještě spaluje v jádru vodík, je AB Doradus C s hmotností 93násobku hmotnosti Jupitera.

 
Eta Carinae, jedna z nejhmotnějších a nejzářivějších známých hvězd

Na horním hmotnostním limitu se však teoretici neumějí sjednotit. Většina odhadů se pohybuje okolo 100–120 hmotností Slunce, protože se předpokládá, že větší hvězdu by silný tlak záření v jejím nitru roztrhal dříve, než by dosáhla hlavní posloupnosti (viz níže). Tomuto odpovídají i pozorování – pokud je někdy pozorována „hvězda“ s větší hmotností, podrobnější rozbor ukázal, že jde minimálně o dvojhvězdu nebo hvězdokupu. Jiné odhady horního limitu hovoří o 130–170 hmotnostech Slunce. Ze zkoumání hvězdokupy Arches vyplývá, že 150násobek hmotnosti Slunce představuje v současné éře vesmíru horní hranici hmotnosti hvězd při jejich vzniku zmlhoviny. Někteří stelárníci však nevylučují ani hvězdu, která by mohla být 1000krát hmotnější než Slunce. Nejhmotnější hvězdy jsou nadobry spektrálních typů O2 a O3. Příkladem extrémně hmotné hvězdy je hvězda Eta Carinae. Eta Carinae váží 100–150krát více než Slunce a délka jejího života je jen několik milionů let. HvězdaR136a1 ve hvězdokupě RMC 136a (modrý veleobr a nejtěžší známá hvězda ve vesmíru) však váží podle měření 265krát více než Slunce.Hvězdy těžší než 150násobek hmotnosti Slunce vznikají podle studie kolizemi a splynutím těžkých hvězd v těsném systému dvou hvězd, z nichž každá měla méně než 150 hmotností Slunce.  První hvězdy, které vznikly po Velkém třesku, však mohly mít podle výpočtů více než 300 hmotností Slunce.

Hustota

Průměrná hustota hmoty ve hvězdách se pohybuje od 1/10 000 000 (červení nadobři) až do 1 000 000 gramů (jedné tuny) na cm³ (bílý trpaslík). Objekty jako neutronové hvězdy a kvarkové hvězdy jsou ještě podstatně hmotnější. Jejich hustota hmoty dosahuje až 100 milionů tun na cm³. Teplota a hustota plynů směrem do nitra hvězdy rychle narůstá.

Velikost

 
Tento obrázek porovnává velikosti hvězd. Vlevo na každé části obrázku se nachází největší hvězda z předchozí části obrázku v poměru velikosti. Země je zcela vpravo na obrázku číslo 1 a Slunce je třetí zleva na obrázku číslo 3

Kromě Slunce jsou všechny hvězdy na obloze kvůli obrovským vzdálenostem viditelné jen jako mihotavé světelné body. Slunce je také hvězda, ale je dostatečně blízko na to, abychom ji viděli jako disk. Hvězdou s největší zdánlivou velikostí po Slunci je R Doradus s úhlovým průměrem pouhých 0,057 úhlové vteřiny.

Disky většiny hvězd jsou velmi malé na to, aby se daly přímo pozorovat dnešními pozemskými teleskopy. Pro tvorbu obrázků se používají interferometry. Jinou technikou měření úhlové velikosti je tzv. zákryt, kdy lze úhlovou velikost vypočítat z přesných měření změny jasu hvězdy při zákrytu Měsícem či jiným tělesem.

Rozsah velikostí hvězd je obrovský. Kolísá v rozhraní od velikosti 20–45 km u neutronových hvězd až do velikosti stonásobku průměru Slunce u nadobrů (napříkladBetelgeuze v souhvězdí Orionu, jež má průměr 650krát větší než je průměr Slunce, tedy asi 900 000 000 km). Poloměry hvězd mohou být až 3000krát větší, než je poloměr Slunce. Obecně platí, že se vzrůstajícím průměrem hvězdy klesá její hustota.

Věk

Věk většiny hvězd je mezi 1–10 miliardami let. Nejstarší objevenou hvězdou je HE 1523-0901, jejíž stáří se odhaduje na 13,2 miliardy let.

Čím je hvězda těžší, tím má kratší životnost, protože v jádrech těžkých hvězd je větší tlak, což způsobuje rychlejší spalování vodíku. Nejtěžší hvězdy žijí v průměru jen pár milionů let, zatímco nejlehčí spalují své palivo pomaličku a vydrží jim na desítky až stovky miliard let.

Proměnnost

Žádná hvězda nezáří od svého vzniku až po zánik konstantně. Ty hvězdy, které však mění svou jasnost rychle (řádově během hodin až desetiletí) nebo o výrazné hodnoty se označují jako proměnné. Příčina proměnnosti je u různých hvězd různá. Je to způsobeno buď tím, že je zakrývá temnější objekt (zákrytové hvězdy) nebo má proměnlivost fyzikální příčinu od samotné hvězdy, např. pulsující hvězdy mění svůj průměr v určitém rozpětí a časovém úseku. Eruptivní proměnné hvězdy procházejí náhlým nárůstem svítivosti následkem erupcí a výronů hmoty. Do této skupiny patří např. protohvězdy nebo Wolf-Rayetovy hvězdy. Kataklyzmatické (explozivní) proměnné hvězdy procházejí dramatickými změnami svých vlastností. Tato skupina obsahuje novy a supernovy. Expandující hvězdy mění svůj průměr náhle obrovskými výbuchy (supernovy, při výbuších zvýší svou jasnost až 100milionkrát). Většina změn jasností však nebývá tak dramatická, mnohé změny jsou pouhým okem nezachytitelné. Hvězdy mají větší sklony k fyzikálním změnám jasnosti na začátku (hvězdy typu T Tauri) a na konci (CefeidaMiridysupernovy...) svého vývoje. Některé hvězdy zase mírně mění svou jasnost kvůli extrémním skvrnám na svých površích.

 
Mira Ceti, proměnná hvězda v souhvězdí Velryby s dlouhým ocasem materiálu, který uvolňuje

Rotace

Rotace hvězdy se dá zjistit pomocí spektroskopických měření nebo přesněji sledováním rotace hvězdných skvrn. Mladé hvězdy rotují rychleji, někdy je rychlost rotace na rovníku vyšší než 100 km / s. V těchto případech odstředivá síla na rovníku silně vydouvá hmotu hvězdy. Rotační rychlost hvězdy typu B, Achernar, je 225 km / s, proto je její rovníkový poloměr o 50 % větší než polární poloměr. Takové hodnoty rychlosti rotace jsou těsně pod hranicí 300 km / s, za kterou by se hvězda rozpadla. Slunce se otočí kolem své osy rychlostí 1,994 km / s jednou za 25–35 dní. Magnetické pole a hvězdný vítr způsobují významné zpomalení rotace hvězd během jejich vývoje na hlavní posloupnosti.

Degenerované hvězdy se vyvinuly do stavu kompaktní hmotnosti, což má za následek vysoké rotační rychlosti. Tyto rychlosti jsou však nízké v porovnání s rychlostmi předpokládanými zachování momentu hybnosti – tendence rotujícího tělesa vyrovnávat zmenšení velikosti zrychlením rotace. Velká část momentu hybnosti hvězdy se ztratí následkem ztráty hmotnosti prostřednictvím hvězdného větru. Přesto pulsary dosahují vysoké rychlosti rotace, například, v případě Krabího pulsaru, 30 otáček za sekundu.

Teplota

Povrchová teplota hvězd hlavní posloupnosti závisí na rychlosti produkce energie v jádře a jeho okolí. Obvykle je dána efektivní teplotou, což představuje teplotu ideálního černého tělesa, které vyzařuje energii se stejnou svítivostí povrchu jako hvězda. Efektivní teplota není reprezentativní hodnota, protože teplota se směrem do jádra zvyšuje. Teplota v jádře hvězdy je několik milionů kelvinů.

Teplota hvězdy ovlivňuje proces ionizace rozličných prvků, výsledkem toho jsou charakteristické absorpční čáry ve spektru. Povrchová teplota hvězdy, absolutní magnituda a absorpční vlastnosti se používají pro klasifikaci hvězd.[42]

Velké hvězdy hlavní posloupnosti dosahují povrchové teploty 50 000 K. Menší hvězdy jako Slunce mají povrchové teploty několik tisíc K. Nejnižší teploty, okolo 3 600 K, dosahují červení obři, ale díky svému obrovskému povrchu mají vysokou svítivost.

Magnetické pole

 
Povrchové magnetické pole hvězdy SU Aurigae (mladá hvězda typu T Tauri)

Magnetické pole hvězdy vzniká uvnitř hvězdy, v oblastech, v nichž probíhá konvekční cirkulace. Tento pohyb horkého, vodivého plazmatu funguje jako dynamo, generuje magnetické pole přesahující hvězdu. Síla magnetického pole se mění s hmotností a složením hvězdy. Množství magnetické aktivity na povrchu závisí na rychlosti rotace hvězdy. Tato povrchová aktivita vytváří hvězdné skvrny. Hvězdné skvrny jsou oblasti se silným magnetickým polem a teplotou nižší než normální povrchová teplota. Koronární smyčky jsou vypouklá magnetická pole vycházející z aktivních oblastí – míst s výraznými jevy na povrchu hvězdy – do vysoké hvězdné atmosféry, koróny.Erupce jsou výtrysky vysoce energetických částic vyzářených toutéž magnetickou aktivitou.

Mladé, rychle rotující hvězdy, mají obvykle vyšší úroveň povrchové aktivity. Magnetické pole může působit na hvězdný vítr a postupně zpomalit rotaci hvězdy. Proto starší hvězdy, jako např. Slunce, rotují mnohem pomaleji a mají nízkou povrchovou aktivitu. Úroveň aktivity starších hvězd se obvykle cyklicky mění a na určité období může zcela ustát.

Vnitřní stavba hvězdy

 
Porovnání vnitřní stavby u hvězdy slunečního typu (vlevo) s červeným obrem (vpravo)

Vnitřek stabilní hvězdy je ve stavu hydrostatické rovnováhy: síly působící na vybraný malý objem se téměř přesně vyrovnávají. Mezi tyto síly patří gravitační síla, která neustále stlačuje hvězdu, a tlak způsobený vznikající energií následkem fúze, který působí směrem ven. Tlakový gradient je dán teplotním gradientem plazmatu: vnější části hvězdy jsou chladnější než jádro. Teplota jádra hvězdy hlavní posloupnosti nebo obrů je min. 107 K. Výsledná teplota a tlak v jádru hvězdy hlavní posloupnosti spalujícího vodík je dostatečný k udržení jaderné fúze a produkuje dostatek energie k tomu, aby zabránil dalšímu kolapsu hvězdy.

Hvězdy hlavní posloupnosti mají ve svém nitru velmi podobnou stavbu. Rozdíly jsou pouze v teplotách, na kterých závisí i to, jaký typ jaderné reakce v hvězdě probíhá. Vrstvy hvězdy směrem zevnitř ven jsou:

  • Jádro – nejžhavější a nejhustší část hvězdy. Jádra jsou zdroje energie hvězd, která se různými způsoby přenáší na povrch hvězd a odtud do okolního prostředí. Následkem jaderné fúze v jádru se uvolňuje energie ve formě gama záření. Tyto fotony interagují s okolním plazmatem a tak zvyšují tepelnou energii jádra. Hvězdy hlavní posloupnosti spalují vodík na helium a pomalu zvyšují podíl hélia v jádře. Kromě hydrostatické rovnováhy dosáhne jádro stabilní hvězdy i energetickou rovnováhu – tepelnou rovnováhu.
  • Vrstva v zářivé rovnováze – velmi silná vrstva plazmatu, která obklopuje jádro. Nazývá se také radiační zóna. Je to oblast uvnitř hvězdy, ve které je záření dostatečně efektivní k udržení toku energie. Fotony elektromagnetického záření, které vznikly v jádře, procházejí touto vrstvou velmi pomalu a jejich vlnová délka klesá. Kvůli velké hustotě prostředí je foton neustále pohlcován a vyzařován okolní hmotou.
  • Konvektivní zóna – ještě chladnější vrstva hvězdy, v níž se energie přenáší prouděním. Vrcholky sestupných a vzestupných proudů můžeme vidět na povrchu hvězdy jako útvary zvané granule.
  • Fotosféra – viditelný (ne však pevný) povrch hvězdy. V této vrstvě se plazma stává průhledné pro fotony. Energie vygenerovaná v jádru se odsud může volně šířit do okolního vesmíru. Je to nejchladnější část hvězdy, při velmi chladných hvězdách nebo v oblasti hvězdných skvrn (slunečních skvrn) se tam dokonce udrží chemické sloučeniny. Nad fotosférou se nachází hvězdná atmosféra.
  • Chromosféra – spodní část atmosféry hvězdy. Teplota v chromosféře opět začíná stoupat.
  • Koróna – nejsvrchnější, nejžhavější a nejméně hustá vnější atmosféra hvězdy, která se postupně rozplývá do mezihvězdného prostoru.

Až do fotosféry teplota hvězdy směrem od jádra k povrchu klesá. V dalších vrstvách opět stoupá. Příčiny tohoto jevu nejsou dosud plně objasněny.